Asymptotically Exact, Embarrassingly Parallel MCMC

نویسندگان

  • Willie Neiswanger
  • Chong Wang
  • Eric P. Xing
چکیده

Communication costs, resulting from synchronization requirements during learning, can greatly slow down many parallel machine learning algorithms. In this paper, we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which subsets of data are processed independently, with very little communication. First, we arbitrarily partition data onto multiple machines. Then, on each machine, any classical MCMC method (e.g., Gibbs sampling) may be used to draw samples from a posterior distribution given the data subset. Finally, the samples from each machine are combined to form samples from the full posterior. This embarrassingly parallel algorithm allows each machine to act independently on a subset of the data (without communication) until the final combination stage. We prove that our algorithm generates asymptotically exact samples and empirically demonstrate its ability to parallelize burn-in and sampling in several models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data

Markov chain Monte Carlo (MCMC) methods have proven to be a very powerful tool for analyzing data of complex structures. However, their computer-intensive nature, which typically require a large number of iterations and a complete scan of the full dataset for each iteration, precludes their use for big data analysis. In this paper, we propose the so-called bootstrap Metropolis-Hastings (BMH) al...

متن کامل

Embarrassingly parallel sequential Markov-chain Monte Carlo for large sets of time series

Bayesian computation crucially relies on Markov chain Monte Carlo (MCMC) algorithms. In the case of massive data sets, running the Metropolis-Hastings sampler to draw from the posterior distribution becomes prohibitive due to the large number of likelihood terms that need to be calculated at each iteration. In order to perform Bayesian inference for a large set of time series, we consider an al...

متن کامل

Parallelizing MCMC with Random Partition Trees

The modern scale of data has brought new challenges to Bayesian inference. In particular, conventional MCMC algorithms are computationally very expensive for large data sets. A promising approach to solve this problem is embarrassingly parallel MCMC (EP-MCMC), which first partitions the data into multiple subsets and runs independent sampling algorithms on each subset. The subset posterior draw...

متن کامل

Embarrassingly Parallel Variational Inference in Nonconjugate Models

We develop a parallel variational inference (VI) procedure for use in data-distributed settings, where each machine only has access to a subset of data and runs VI independently, without communicating with other machines. This type of “embarrassingly parallel” procedure has recently been developed for MCMC inference algorithms; however, in many cases it is not possible to directly extend this p...

متن کامل

Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning

Global tractography estimates brain connectivity by organizing signal-generating fiber segments in an optimal configuration that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014